

Informe Técnico / Technical Report

Ref. #: PROS-TR-2013-06

Title: Change Patterns for Process Families

Author (s): Clara Ayora, Victoria Torres, Barbara Weber, Manfred Reichert, Vicente
Pelechano

Corresponding
author (s):

cayora@pros.upv.es

Document version number: 1.0 Final version: Yes Pages: 28

Release date: February 28th, 2013

Key words: Process variability, process families, patterns, process change

Change Patterns for Process Families

Clara Ayora, Victoria Torres, Barbara Weber,

Manfred Reichert, Vicente Pelechano

Universidad Politécnica de Valencia · Camino de Vera s/n · Edificio 1F · 46022 Valencia Spain ·

T. +34 96 387 70 07 Ext. 83530 · M. + 34 619 543 623 · F. +34 96 387 73 59 · info@pros.upv.es · www.pros.upv.es

Change Patterns for Process Families1

Clara Ayora1, Victoria Torres1, Barbara Weber2, Manfred Reichert3, and
Vicente Pelechano1

1 Universitat Politècnica de València
cayora, vtorres, pele@pros.upv.es

2 University of Innsbruck, Austria
barbara.weber@uibk.ac.at

3 University of Ulm, Germany
manfred.reichert@uni-ulm.de

Abstract. The increasing adoption of process-aware information systems (PAISs),
together with the variability of business processes (BPs), has resulted in large
collections of related process model variants (i.e., process families). To effectively
deal with process families, several proposals (e.g., C-EPC, Provop) exist that
extend BP modeling languages with variability-specific constructs. While fostering
reuse and reducing modeling efforts, respective constructs imply additional
complexity and demand proper support for process designers when creating and
modifying process families. Recently, generic and language-independent
adaptation patterns were successfully introduced for creating and evolving single
BP models. However, they are not sufficient to cope with the specific needs for
modeling and evolving process families. This paper suggests a complementary
set of generic and language-independent change patterns specifically tailored to
the needs of process families. When used in combination with existing adaptation
patterns, change patterns for process families will enable the modeling and
evolution of process families at a high-level of abstraction. Further, they will serve
as reference for implementing tools or comparing proposals managing process
families.

Keywords: Process Variability, Process Families, Patterns, Process Change

1. Introduction

The increasing adoption of process-aware information systems (PAISs) has
resulted in large process model repositories [25,6]. Since business process (BP)
models usually may vary, existing repositories often comprise large collections of
related process model variants (process variants for short) [24]. Usually, such
process variants have common parts and pursue same or similar business
objective, but at the same time differ regarding the application context in which

1 This work has been developed with the support of MICINN under the Project
EVERYWARE TIN2010-18011

they are used [12,25], e.g., countries’ regulations, services delivered, or customer
categories [23,6,24]. We denote such collections of related process variants as
process families. In large companies, a process family might comprise dozens or
hundreds of process variants [23]. For example, a process family for vehicle
maintenance may comprise more than 900 variants with country-, garage-, and
vehicle-specific differences [13]. In turn, [21] reports on a process family
comprising more than 90 variants for planning and handling medical
examinations. Designing and implementing each process variant model from
scratch and maintaining it separately would be too inefficient and costly. Thus,
there is a great interest in capturing common process knowledge only once and
re-using it in terms of configurable process models representing the complete
process family.

Motivated by the shortcomings of traditional BP modeling approaches [13],
proposals exist for dealing with process families, e.g., [26,13,2]. Common to them
is the extension of BP modeling languages with variability-specific constructs that
enable the creation of configurable process models. By treating variability as first
class citizen, these extensions help avoiding redundancies, fostering reusability,

and reducing modeling efforts. However, introducing variability-specific constructs
implies additional complexity concerning the modeling language. To make these
proposals amenable for industrial strength use, the quality of created models
becomes crucial. In turn, this necessitates proper support for process designers
when creating and modifying process families.

In [32], a language-independent and empirically grounded set of adaptation
patterns is proposed allowing for the creation and modification of single BP
models [31]. Adaptation patterns not only allow creating and modifying BP models
at a high level of abstraction, fostering model quality by ensuring correctness-by-
construction, but also provide systematic means for realizing change operations
optimized for a specific modeling language as well as comparing existing
approaches in respect to BP flexibility [7]. Further, adaptation patterns have
served as basis for implementing changes in different stages of the process
lifecycle; e.g., model creation [30,10], process configuration [13], process instance
change [5,9,22], model evolution [5,17], model refactoring [33], change reuse [3],
model comparison [16], and change analysis [11].

While adaptation patterns are well suited for creating and modifying single BP
models, they are not sufficient to cope with the specific needs for dealing with
process families [4]. In the vein of adaptation patterns, this paper suggests a
complementary set of generic, language-independent change patterns specifically
tailored towards the needs of process families. Used in combination with the
existing adaptation patterns, change patterns for process families will enable the
modeling as well as evolution of process families at a high level of abstraction. In
particular, they will serve as reference for specific language-dependent
implementations, build the foundation for realizing changes along the BP lifecycle,
and foster the comparison of existing proposals for BP variability.

Change patterns have been obtained after performing a systematic literature
review looking specifically at variability-specific constructs used by proposals for
BP variability. Since the proposed patterns are meant to be generic and language-
independent, we abstract from approach-specific particularities. However, to
ensure that the proposed patterns—despite their generic nature—are specific
enough to cover existing proposals, we apply them to two well-known proposal
dealing with process families, i.e., C-EPC and Provop.

The remainder of this report is structured as follows. Sect. 2 discusses related
work and Sect. 3 presents the systematic literature review. In Sect. 4, we present
the variability-specific language constructs obtained from the latter. Sect. 5
presents nine change patterns for process families. Sect. 6 provides a discussion
and Sect. 7 concludes the paper.

2. Related Work

Closely related to our work is research on adaptation patterns, workflow patterns,
and process variability.

Adaptation patterns (AP) [31] allow structurally changing process models using
high-level change operations instead of low level change primitives (e.g., add or
delete node). They can be applied along to the entire process lifecycle and do not
have to be pre-planned, i.e., the region to which adaptation patterns may be
applied can be chosen dynamically. Hence, adaptation patterns are well suited for
realizing process changes at both build- and run-time. AP1 and AP2 allow
inserting and deleting process fragments. Moving and replacing fragments is
supported by AP3 (MOVE Process Fragment), AP4 (REPLACE Process
Fragment), AP5 (SWAP Process Fragment), and AP14 (COPY Process
Fragment). AP6 and AP7 allow adding or removing levels of hierarchy, AP8-AP12
support adaptations of control dependencies: embedding process fragments in
loops (AP8), parallelizing (AP9) or embedding them in a conditional branch
(AP10), and adding/removing control dependencies (AP11, AP12). Finally, AP13
allows changing transition conditions. This paper complements adaptation
patterns, which cover the basic use cases for creating and modifying process
models, with a set of patterns covering variability needs in process families.

Workflow patterns were introduced for analyzing the expressiveness of process

modeling languages. Patterns cover different perspectives like control flow [1],
data [27], resources [28], time [18], and exceptions [29,20]. Further, [10] describes
a set of pattern compounds, similar to adaptation patterns, allowing for the
context-sensitive selection and pattern composition during process modeling.
However, these patterns are not sufficient for effectively modeling and modifying

process families. They do not consider variability-specific constructs introduced by
process families and hence are complementary to our change patterns.

Proposals dealing with BP variability exist for modeling, configuring [26, 13],
and maintaining process families; e.g., [15] provides a set of language-specific
operators to adapt process variants at runtime based on software product line
concepts. In [7], a combination of workflow-, rule-, and event-modeling is
presented to customize process variants for a given execution context. Unlike
these proposals, change patterns provide language-independent means to model
and evolve process families at a high level of abstraction. Finally, there are
refactoring techniques [33] to remove redundancies among process variants in
large process model repositories.

3. Research Methodology

The goal of this paper is to provide a set of generic and language-independent
patterns for modeling and evolving process families. We first present the research
methodology we employed for identifying these patterns. To ensure that the latter
are expressive enough to deal with the specific needs of process families, as
basis, we identified the set of variability-specific language constructs frequently
used by existing proposals to capture the variability within a process family. More
precisely, we conducted a systematic literature review (SLR) [14] using the
following procedure: (1) formulation of the research question, (2) description of a
search strategy for finding relevant papers, (3) identification of inclusion and
exclusion criteria, and (4) analysis of the data obtained. The main research
question to be answered by the SLR is “What variability-specific language
constructs are provided by existing proposals for modeling BP variability and
process families respectively?”. For this, we selected the following search string
(considering different synonyms):

(’process family’ OR ’configurable process model’ OR ’process model collection’
OR ’reference process model’ OR ’configurable workflow’) OR ’process variant’

OR ’business process variability’ OR (’process configuration’ OR ’process model
configuration’)

This search string was applied to relevant data sources: ACM Digital Library, IEEE
Xplore Digital Library, Science Direct - Elsevier, SpringerLink, Wiley Inter Science,
and World Scientific. Overall, these libraries include the proceedings of the most
relevant conferences and journals in the area of BP management; e.g., Data &
Knowledge Engineering Journal, Information Systems Journal, Conference on
Business Process Management (BPM), Conference on Advanced Information
Systems Engineering (CAiSE), and Working Conference of Business Process
Modeling, Development, and Support (BPMDS). To apply the search string
appropriately, it was adjusted where necessary (e.g., plural forms). As an
additional data source, we considered the references of the identified papers.

A paper was included in the SLR (i.e., inclusion criterion) if and only if its title,
abstract, and content is related to process families, either from a theoretical or
practical perspective. On the contrary, papers were excluded (i.e., exclusion
criterion) if their focus was not related to process families (e.g., software product
lines). Papers describing the same proposal were removed and only the most
complete version was included. We did not use any restriction concerning the
publication date and only papers written in English were included. Finally, we only
included proposals for which an implementation or evaluation exists.
Our SLR resulted in a total of 4960 papers, which were manually reviewed based
on their titles and abstracts. In total, 25 papers passed this filtering and were
further analyzed. To identify the language constructs commonly used in BP
proposals (and serving as basis for our change patterns), we first create a list of
candidate constructs. Thereby, we relied on our experience with process families
[4,31,33]. Then, we analyzed the 25 identified papers to find empirical evidence
for our candidate variability-specific language constructs and iteratively refined the
initial list. Finally, only those constructs for which enough empirical evidence
exists were included in the final list of variability-specific constructs.

Although proposals use different terminology and realize constructs in different
ways, the SLR revealed that they essentially support the same language
constructs for dealing with BP variability. We identified four variability-specific
language constructs commonly shared by the 25 proposals: configurable region,
configuration alternative, context condition, and configuration constraint (see
Sect. 4.1 for details). Configurable regions are supported by 20 of the 25
proposals and configuration alternatives by 22 proposals. Context conditions are
covered by 16 proposals while 15 proposals support the definition of configuration
constraints. Additional language constructs we identified (e.g., configurable region
resolution time) are only considered by few proposals (<3) and are therefore not
included in our final list of variability-specific language constructs (for further
details on the SLR see2).

The final list of four variability-specific language constructs was then used as a
basis for the change patterns. Since the proposed patterns are meant to be
generic and language-independent, we abstracted from approach-specific
particularities (cf. Sect. 4). Thereby, we focused on the control flow perspective
since the SLR showed that this is the perspective mostly addressed by existing
proposals. To ensure that the proposed patterns—despite their generic nature—
are specific enough to cover existing proposals, we applied the respective
patterns to two well-known proposal dealing with process families (cf. Sect. 5).

2 https://pros.webs.upv.es/bpvar/SLR/BPvariability.rar

https://pros.webs.upv.es/bpvar/SLR/BPvariability.rar

4. Coping with Variability in Business Process Families

This section describes the variability-specific language constructs obtained from
the SLR and introduces two representative proposals. For the latter, we will show
in Sect. 5 how the change patterns can be realized. For illustration purpose, we
make use of the process carried out when checking-in at an airport. We chose this
process since it shows a high degree of variability; e.g., variability occurs due to
the type of check-in (e.g., online, or at a counter), which also determines the type
of boarding card (e.g., electronic vs. paper-based). Other sources of variability
include the type of passenger (e.g., unaccompanied minors requiring extra
assistance) and the type of luggage (e.g., overweight luggage).

4.1 Coping with Variability in Business Process Families

The SLR described in Sect. 3 has revealed that the following language constructs
are commonly used by existing proposals to capture variability (although their
concrete realization might differ) in addition to standard process modeling
constructs (e.g., activities and gateways). These language constructs form the
basis of the change patterns for process families (see Sect. 5).

 Language Construct LC1 (Configurable Region). A configurable region
is a region in a configurable process model for which different configuration
choices may exist depending on the application context, e.g., the airline
may offer different ways of obtaining the boarding cards depending on how
the check-in is accomplished: printing a boarding card at the airline desk,
download an electronic boarding card at home, or obtaining it via mobile
phone.

 Language Construct LC2 (Configuration Alternatives). A configuration
alternative is defined as a particular configuration choice that may be
selected for a specific configurable region, e.g., there exist different types
of boarding card: paper-based, electronic, or in the mobile phone.

 Language Construct LC3 (Context Condition). A context condition
defines the conditions under which a particular configuration alternative of a
configurable region shall be selected, e.g., only passengers carrying an
overweight luggage may have to pay an excess fee.

 Language Construct LC4 (Configuration Constraint). A configuration
constraint is defined as a restriction of the selection of configuration
alternatives of the same or different configurable regions. Respective
constraints are based on semantic restrictions to ensure the proper use of
configuration alternatives, e.g., staff members need to be localized when
unaccompanied minors are travelling.

4.2 Proposals Dealing with Process Families

The SLR described in Sect. 3 identified 25 proposals for dealing with process
families. In the following, we describe two of them in more detail and explain how
the variability-specific language constructs introduced in Sect. 4.1 have been
realized by these proposals. Sect. 5 will then apply the identified change patterns
to these two proposals to demonstrate that the proposed patterns are indeed
generic. As representatives, we select two proposals that are (1) well established
and highly cited, and (2) take fundamentally different approaches to realize the
variability-specific language constructs. This way we want to ensure that the
proposed patterns are general enough to cover very distinct proposals, but still
specific enough to cover their essence.

C-EPC. A possible way of specifying a configurable process model is by means of
configurable nodes. Modeling languages supporting this approach include, for
example, C-EPC and C-YAWL [8]. Basically, these proposals extend an existing
BP modeling language by adding configurable elements for explicitly representing
variability in process families. In the following, we take C-EPC [26] as
representative of this approach since it constitutes a well-known proposal. Fig. 1
illustrates the configurable process model as C-EPC for the check-in process.
Configurable nodes are depicted with a thicker line. A configurable region (LC1) in
C-EPC is specified by a process fragment of the configurable process model with
exactly one entry and one exit (i.e., SESE fragment), and may take two different
forms. First, the SESE fragment may consist of a splitting configurable connector,
immediately followed by a set of branches representing configuration alternatives,
and a joining configurable connector; i.e., the configurable connectors delimit the
configurable region (e.g., Configurable region 2 in Fig. 1). Alternatively, the SESE
fragment may consist of a configurable function (e.g., Configurable region 1 and 3
in Fig. 1), which may be configured as ON (i.e., the function is kept in the model),
OFF (i.e., the function is removed from the model), or OPT (i.e., a conditional
branching is included in the model deferring the decision to run-time). In turn, a
configuration alternative (LC2) is specified by a SESE fragment which may be
included as a branch between two configurable connectors (e.g., Print electronic
boarding card in Configurable region 2 in Fig. 1). Context conditions (LC3) are
represented in C-EPC separately in a questionnaire model [19], which is not
considered in this paper. Finally, a configuration constraint (LC4) is specified by a
configuration requirement linked to the configurable nodes that delimit the
configurable region to which the respective configuration alternatives belong (e.g.,
Configuration requirement 1 in Fig. 1 states that the inclusion of the function Fill in

UM form implies the inclusion of the function Localize staff).

Identify

passenger

Assign

seat

Fill in UM

form

Localize

staff

Configurable function Configurable XOR connectorX Configuration requirement

Configurable region 1 Configurable region 2 Configurable region 3

S
E

Q
2

b
S

E
Q

2
a

X X

Print electronic

boarding card

Print boarding

card

Conf. alternative 2a

Conf. alternative 2b
Drop off regular

luggage

Configuration requirement 1:

Fill in UM form = ‘ON’ à Localize staff = ‘ON’

Fig. 1. C-EPC configurable process model for the check-in process

Provop. Another way of handling process families is based on the observation that
process variants are often derived by adapting a pre-specified base process
model (base process, for short) to the given context through a sequence of
structural adaptations. The Provop proposal follows this approach [13]. We
choose it since it provides advanced tool support for adapting a base process and
for ensuring syntactical and semantical correctness of process variants derived.
Fig. 2 illustrates how the process family dealing with the check-in process can be
represented using Provop. The top of Fig. 2 shows the base process model from
which the process variants may be derived. In Provop, a configurable region (LC1)
is specified by a SESE fragment of the base process, delimited by two adjustment
points; i.e., black diamonds (e.g., Configurable region 1 comprises the process
fragment delimited by adjustment points A and B in Fig. 2). In turn, a configuration
alternative (LC2) is specified by a change option that includes (1) the list of
change operations modifying the base process at a specific configurable region
and (2) a context rule that defines the context conditions under which the change
operations shall be applied (e.g., Opt. 1 in Fig. 2). Context conditions (LC3) are
specified by context rules which include a set of context variables and their values
specifying the conditions under which a configuration alternative (i.e., a change
option) shall be applied (e.g., Opt. 2 is applied if the check-in type is online). All
context variables and their allowed values are gathered all together in the context
model (cf. Fig. 2C). Finally, configuration constraints (LC4) are specified as
constraints (e.g., mutual exclusion, inclusion) between two change options in the
option constraint model; e.g., if Opt. 2 is applied then Opt. 3 has to be applied as
well (cf. Fig. 2C).

Assign seat
Print boarding

card

A) Base model

B) Change options

CTXT RULE (static):

IF check-in_type = ONLINE

O
p

t.
 2

A

CTXT RULE (static):

IF passenger_type = UM

O
p

t.
 1

Fill in

UM form

A B

B

INSERT

DELETE Print boarding

card

B C

Print electronic

boarding card

B C

INSERT

Context Variable Range of Values

check-in_type

passenger_type

ONLINE, COUNTER

ADULT, UM, SPECIAL_NEEDS

C) Context model
D) Option constraint model

Opt. 2 Opt. 3includes

CTXT RULE (static):

IF passenger_type = UM or

passenger_type = SPECIAL_NEEDS

O
p

t.
 3

Localize

staff

D EINSERT

Conf. alternative 2b C

Drop off regular

luggage

D E

Configurable region 1

Configurable region 2

Configurable region 3

Identify

passenger

Conf. alternative 2aConf. alternative 1 Conf. alternative 3

Fig. 2. Provop model for the check-in process

5. Coping with Variability in Business Process Families

This section presents nine change patterns we consider as relevant for dealing
with changes in process families. These patterns refer to the four variability-
specific language constructs we obtained from our systematic literature review.
They are generic in the sense that they abstract from proposal-specific details.
Moreover, they intend to be complete regarding the control flow perspective and
cover all changes related to commonly used variability-specific language
constructs. Further, we suppose that the change patterns will be combined with
adaptation patterns to allow for the modeling and evolution of process families at a
high level of abstraction. As illustrated in Table 1, we divide the change patterns
into three categories: insertion, deletion, and modification of variability-specific
parts of a configurable process model.

CP1: INSERT Configurable Region

CP2: DELETE Configurable Region

CP3: INSERT Configuration Alternative IN a Configurable Region

CP4: DELETE Configuration Alternative IN a Configurable Region

CP5: INSERT Context Condition OF a Configuration Alternative

CP6: DELETE Context Condition OF a Configuration Alternative

CP7: MODIFY Context Condition OF a Configuration Alternative

CP8: INSERT Configuration Constraint BETWEEN Configuration Alternatives

CP9: DELETE Configuration Constraint BETWEEN Configuration Alternatives

Table 1. Change patterns for process families

All change patterns, except CP7, allow adding (removing) variability-specific
language constructs to (from) a configurable process model, representing the
process family. In turn, pattern CP7 allows changing the conditions under which a
configuration alternative is selected. To keep the pattern set minimal, we do not
consider patterns for modifying configurable regions, configuration alternatives,
and configuration constraints. These modifications can be realized based on the
combined use of change patterns and adaptation patterns. For example,
modifying a configuration alternative may be implemented applying patterns CP3
and CP4 (INSERT/DELETE Configuration Alternative IN a Configurable Region),
which, in turn, make use of respective adaptation patterns. Further, adding or
removing process fragments which are shared by all process variants (i.e.,
commonalities), may be realized using adaptation patterns AP1 and AP2
(INSERT/DELETE Process Fragment).

For each of the change patterns, we provide a name, a brief description, an
illustrative example, a description of the problem addressed, and corresponding
design choices (indicating pattern variants). For example, CP1 (i.e., INSERT a
Configurable Region) presents three design choices (cf. Fig. 3): insert a
configurable region as a new process region with a set of new configuration
alternatives, inserting it by transforming a commonality into a configuration
alternative (i.e., a common process fragment now is only applied in a specific
application context), or by transforming a set of commonalities into a set of
configuration alternatives. To demonstrate that the patterns—despite their generic

nature—still cover the essence of different proposals for BP variability, we apply
them to C-EPC and Provop, and show how they can be realized in their context.
For example, regarding CP1 (cf. Figs. 3-4), for each design choice, we indicate for
both C-EPC and Provop how CP1 can be implemented using adaptation patterns.
Further, note that for C-EPC we provide implementation details distinguishing
between (i) configurable functions and (ii) configurable connectors since both
allow representing configurable regions. In addition, we provide information about
the parameters needed for each pattern. For example, realizing CP1 requires (1)
the precise position in the configurable process model where the configurable
region shall be inserted and (2) the configuration alternatives to be inserted in the
configurable region (if needed). This information is highlighted in gray in the
figures indicating how change patterns may be realized.

Pattern CP1: INSERT Configurable Region

Description: In a configurable process model, a configurable region shall be
added.

Example: The way how boarding cards are handled depends on the type of
check-in (e.g., paper-based vs. electronic boarding cards). Assume that the
configurable process model has not considered these configuration alternatives
yet. Hence, a configurable region needs to be added to reflect this variability.

Problem: At a certain position in the configurable process model, different
configuration alternatives exist not reflected in the configurable process model so
far. Hence, a configurable region covering these configuration alternatives shall
be added.

Design choices: Three different design choices (DCs) exist:
DC1) Insertion as a new configurable region with up to n configuration
alternatives (n ≥ 0)
DC2) Insertion as a new configurable region by transforming a common process
fragment into a configuration alternative
DC3) Insertion as a new configurable region by transforming existing process
fragments into a set of configuration alternatives

Implementation in C-EPC:
For DC1, CP1 is realized by
1. applying adaptation pattern AP1 (i.e., INSERT Process Fragment) to insert the

configurable region using either (i) a configurable function or (ii) two
configurable connectors (i.e., split and join) at the precise position where the
configurable region should be located (i.e., after activity B),

2. applying repeatedly CP3 (INSERT Configuration Alternative IN a Configurable
Region) to insert a process fragment representing the configuration alternative
(only relevant for configurable connectors), i.e., the configuration alternative is
added as a branch between the two configurable connectors delimiting the
configurable region (i.e., activity X).

A B

X

BA B X A B A
X

X

BAi) ii)
1 21

For DC2, CP1 is realized by
1. applying adaptation pattern AP1 (i.e., INSERT Process Fragment) to insert the

configurable region using either (i) a configurable function or (ii) two
configurable connectors (i.e., split and join) at the precise position where the
configurable region should be located (i.e., after activity B),

2. applying adaptation pattern AP2 (i.e., DELETE Process Fragment) to delete
the common process fragment from its current position (i.e., activity B), and

3. applying CP3 (INSERT Configuration Alternative IN a Configurable Region) to
re-insert the common process fragment as a configuration alternative of the
configurable region (only relevant for configurable connectors), i.e., the
configuration alternative is added as a branch between the two configurable
connectors delimiting the configurable region (i.e., activity B).

B

A C A
B

B CA CB

A C A C

A C

i)

ii)
1 2 3

B

2

A CB

1
BB

B

For DC3, CP1 is realized by
1. applying adaptation pattern AP1 (i.e., INSERT Process Fragment) to insert the

configurable region (only relevant for configurable connectors) at the precise
position where the configurable region should be located (i.e., after the join
XOR gateway),

2. applying adaptation pattern AP2 (i.e., DELETE Process Fragment) to delete
the existing process fragment from its current position, and

3. applying repeatedly CP3 (INSERT Configuration Alternative IN a Configurable
Region) once per configuration alternative to re-insert the existing process
fragments as configuration alternatives of the configurable region, i.e., each
branch of the process fragment is added as a branch between the two
configurable connectors delimiting the configurable region (i.e., activity B is
inserted as one alternative and activity C as another one).

A D

B

C
A D

B

C
A D

B

C
A D

B

C

1 2 3

Implementation in Provop:
For DC1, CP1 is realized by
1. inserting two adjustment points (i.e., Y and Z) in the base process and
2. applying repeatedly CP3 (INSERT Configuration Alternative IN a Configurable

Region) once for each new configuration alternative to define respective
change options (i.e., Opt. 1).

B

Y Z

A C B

Y

A C
CTXT RULE:

If context_variable = VALUE

O
p

t.
 1 Y ZINSERT

X
Z

1 2

X Opt. 1

For DC2, CP1 is realized by
1. inserting two adjustment points (i.e., Y and Z) embedding an existing process

fragment of the base process (i.e., activity B) and
2. applying CP3 (INSERT Configuration Alternative IN a Configurable Region) to

define a configuration alternative in terms of a change option inserting the
existing process fragment into/removing the existing process fragment under
certain conditions from the base process (i.e., Opt. 1).

Fig. 3. CP1 (INSERT Configurable Region)

B

Y Z

A C B

Y

A C

Z

1 2

O
p

t.
 1 Y Z

B
DELETE

CTXT RULE:

If context_variable = VALUE

Opt. 1

For DC3, CP1 is realized by
1. inserting two adjustment points (i.e., Y and Z) embedding an existing process

fragment of the base process (i.e., the process fragment becomes optional)
and

2. applying repeatedly CP3 (INSERT Configuration Alternative IN a Configurable
Region) to define the set of configuration alternatives in terms of change
options inserting/removing existing process fragments under certain conditions
from the base process (i.e., one option for activity B and another one for
activity C).

B
Y Z

A D
C

B

A D
C

Y Z

O
p

t.
 1 Y Z

DELETE

Y ZINSERT

B

B

C

1 2

CTXT RULE:

If context_variable = VALUE

Opt. 1

Opt. 2

O
p

t.
 2 Y Z

DELETE

Y ZINSERT

C

B

C

CTXT RULE:

If context_variable2 = VALUE2
If adjustment points already exist at the entry or exit of the new configurable
region (e.g., as part of another configurable region) these may be reused instead.

B

Y Z

A CB

Y Z

A C

W
W

Parameters:
- the position in the configurable process model where the configurable region

shall be inserted
- the configuration alternative(s) to be added to the configurable region

Pattern CP2: DELETE Configurable Region

Description: In a configurable process model, a configurable region shall be
deleted.

Example: Assume that a configurable region, capturing the variability for
obtaining a boarding card, exists (i.e., paper vs. electronic document). However,
in order to save money, the airline now only offers the electronic-based boarding
card (i.e., other configuration alternatives are no longer offered) and hence the
configurable region is no longer needed.

Problem: A configurable region is no longer needed and thus it shall be deleted.

Design choices: Three different design choices (DCs) exist:
DC1) Deletion by removing all the configuration alternatives
DC2) Deletion by keeping exactly one of the configuration alternatives (i.e., the
configuration alternative remains as a common process fragment)
DC3) Deletion by keeping the set of configuration alternatives

Implementation in C-EPC:
For DC1, CP1 is realized by
1. applying repeatedly change pattern CP4 (i.e., DELETE Configuration

Alternative IN a Configurable Region) to delete each existing configuration
alternative; i.e., once per configuration alternatives (only relevant for
configurable connectors, i.e., activity X),

2. applying adaptation pattern AP2 (DELETE Process Fragment) to delete the
configurable region in form of either (i) a configurable function or (ii) two
configurable connectors (i.e., split and join).

X A B

B

A B

A BA
X

BA

i)

ii)
21

2

For DC2, CP1 is realized by
1. applying repeatedly CP4 (DELETE Configuration Alternative IN a Configurable

Region) to delete the existing configuration alternatives of the configurable
region (only relevant for configurable connectors, i.e., activity B),

2. applying adaptation pattern AP2 (i.e., DELETE Process Fragment) to delete
the configurable region in form of either (i) a configurable function or (ii) two
configurable connectors (i.e., split and join), and

3. applying adaptation pattern AP1 (i.e., INSERT Process Fragment) to re-insert
the remaining configuration alternative as a (common) process fragment in the
exact position where the configurable region was located (i.e., activity B).

B

A CA
B

B

A C

C A C

A CBA C

A C

i)

ii)

2 3

1 2 3

B

B

For DC3, CP1 is realized by
1. applying adaptation pattern AP2 (i.e., DELETE Process Fragment) to delete

the existing process fragment (including the configurable region and its
alternatives) from its current position,

2. applying adaptation pattern AP1 (i.e., INSERT Process Fragment) to re-insert
at the precise position where the configurable region was located a process
fragment consisting of a two non-configurable connectors, and

3. applying repeatedly adaptation pattern AP1 (i.e., INSERT Process Fragment)
to re-insert the deleted configuration alternatives as branches between the two
recently added non-configurable connectors (i.e., activity B is inserted as one
branch and activity C as another one).

A D

B

C
A D A D

B

C1 2
A D

B

C

3

Implementation in Provop:
For DC1, CP1 is realized by
1. applying repeatedly CP4 (DELETE Configuration Alternative IN a Configurable

Region) once for each configuration alternative defined by respective change
options (i.e., Opt. 1) and

2. deleting the two adjustment points in the base model that delimit the
configurable region to be deleted (i.e., Y and Z).

BA CB

Y

A C
CTXT RULE:

If context_variable = VALUE

O
p

t.
 1 Y ZINSERT

X

Z

B

Y

A C

Z

1 2

For DC2, CP1 is realized by
1. applying the change option defining the configuration alternative to be kept

(i.e., Opt. 2),
2. applying repeatedly CP4 (DELETE Configuration Alternative IN a Configurable

Region) once for each configuration alternative defined by respective change
options (i.e., Opt. 1 and Opt. 2), and

3. deleting the two adjustment points in the base model that delimit the
configurable region to be deleted (i.e., Y and Z).

Fig. 4. CP2 (DELETE Configurable Region)

ACA

Y Z

CTXT RULE:

If context_variable2 = VALUE2

O
p

t.
 1 Y ZDELETE

B

CTXT RULE:

If context_variable = VALUE

O
p

t.
 2 Y ZINSERT

B

1
B

Y

C

Z

CTXT RULE:

If context_variable2 = VALUE2

O
p

t.
 1 Y ZDELETE

B

CTXT RULE:

If context_variable = VALUE

O
p

t.
 2 Y ZINSERT

B

2
A B

Y

C

Z

3
BA C

For DC3, CP1 is realized by
1. applying the change options defining the configuration alternatives that should

be kept (i.e., Opt. 1 and Opt. 2),
2. applying repeatedly CP4 (DELETE Configuration Alternative IN a Configurable

Region) once for each configuration alternative to define respective change
options (i.e., Opt. 1 and Opt. 2), and

3. deleting the two adjustment points in the base model that delimit the
configurable region to be deleted (i.e., Y and Z).

ADA

Y Z

CTXT RULE:

If context_variable2 = VALUE2

O
p

t.
 2 Y ZINSERT

C

1
B

Y

D

Z

CTXT RULE:

If context_variable2 = VALUE2

O
p

t.
 2 Y ZINSERT

C

2
A B

Y

D

Z

3

CTXT RULE:

If context_variable = VALUE

O
p

t.
 1 Y ZINSERT

B

CTXT RULE:

If context_variable = VALUE

O
p

t.
 1 Y ZINSERT

B

C C A B DC

If an adjustment point (to be deleted) constitutes the entry or exit of another
configurable region, it must not be deleted.

B

Y Z

A C B

Y Z

A C

W

Parameters:
- the configurable region to be deleted
- the configuration alternative(s) that should be kept

Fig. 5. CP3 (INSERT Configuration Alternative IN a Configurable Region)

3 Note that we do not consider here configuration alternatives referred by configurable
functions (i.e., ON, OFF, OPT) since they are implicitly inserted when inserting a
configurable function as a configurable region.

Pattern CP3: INSERT Configuration Alternative IN a Configurable Region

Description: In a configurable process model, a configuration alternative shall
be added to a specific configurable region.

Example: Assume that a configurable region, capturing the variability for
obtaining a boarding card, exists (i.e., paper vs. electronic document). Assume
further that the airline now wants to offer the possibility of obtaining the boarding
card for smart phones as well. Thus, a alternative shall be added to this
configurable region.

Problem: For a specific configurable region of the configurable process model,
existing configuration alternatives do not cover all possible configuration choices
and hence an additional configuration alternative shall be added.

Implementation in C-EPC: CP3 is realized by applying adaptation pattern AP1
(i.e., INSERT Process Fragment) to insert the process fragment representing the
configuration alternative, i.e., the configuration alternative is added as a branch
between the two configurable connectors delimiting the configurable region (i.e.,
activity X)3.

A C
B

X

A C
B

X

Implementation in Provop: CP3 is realized by defining a change option

consisting of a sequence of change operations and a context rule.

B

Y

A C

Z

O
p

t.
 1 Y ZINSERT

X

CTXT RULE:

If context_variable = VALUE

Opt. 1

Parameters:
- the configurable region to which the configuration alternative belongs
- the configuration alternative to be inserted

4 Note that we do not consider here configuration alternatives referred by configurable
functions (i.e., ON, OFF, OPT) since they are implicitly deleted when deleting a
configurable function as a configurable region.

Pattern CP4: DELETE Configuration Alternative IN a Configurable Region

Description: In a configurable process model, a configuration alternative of a
specific configurable region shall be deleted.

Example: Assume that a configurable region capturing the variability for
obtaining a boarding card exists (i.e., paper vs. electronic document). Assume
further that for economic reasons, the airline does not offer paper-based
boarding cards anymore allowing only electronic and mobile phone ones. Thus,
the configuration alternative printing a paper boarding card is no longer needed.

Problem: A configuration alternative is no longer needed and thus shall be
deleted.

Implementation in C-EPC: CP4 is realized by applying adaptation pattern AP2
(i.e., DELETE Process Fragment) to delete the process fragment representing
the configuration alternative, i.e., the configuration alternative is deleted as a
branch between the two configurable connectors delimiting the configurable
region (i.e., activity X)4. If the configuration alternative is associated with
configuration requirements, these may be deleted as well by applying CP9
(DELETE Constraint BETWEEN Configuration Alternatives), i.e., Configuration
requirement 1.

A C
B

X
A C

B

Configuration

requirement 1

Implementation in Provop: CP4 is realized by deleting a change option

consisting of a sequence of change operations and a context rule.

B

Y

A C

Z

O
p

t.
 1 Y ZINSERT
X

CTXT RULE:

If context_variable = VALUE

B

Y

A C

Z

Associated context rules may be deleted as well if they are no needed anymore

in other context rules. This can be done applying CP6 (DELETE Context

Conditions OF a Configuration Alternative). In addition, if the change option

deleted is the only one referring to the configurable region, the latter may be

deleted as well applying CP2 (DELETE Configurable Region). Furthermore,

associated option constraints defined in the option constraint model may be

deleted as well by applying CP9 (DELETE Constraint BETWEEN Configuration

Fig. 6. CP4 (DELETE Configuration Alternative IN a Configurable Region)

Fig. 7. CP5 (INSERT Context Condition OF a Configuration Alternative)

Alternatives).

Parameters:
- the configurable region to which the configuration alternative belongs
- the configuration alternative to be deleted

Pattern CP5: INSERT Context Condition OF a Configuration Alternative

Description: In a configurable process model, a context condition related to a
configuration alternative of a configurable region shall be added to define when
the configuration alternative shall be selected

Example: A passenger who carries luggage exceeding 20kg must pay an extra
fee (where luggage exceeding 20kg refers to the new context condition).

Problem: A context condition shall be added to a configurable process model to
specify the condition under which a particular configuration alternative of a
configurable process model shall be selected.

Implementation in C-EPC: CP5 is not applicable since context information is
captured separately in the questionnaire model, which is not considered in this
work.

Implementation in Provop: CP5 is realized by adding a context rule. If the

context rule includes context variables (or values) not yet defined in the context

model, the latter must be updated accordingly, i.e., context variables (or values)

are inserted.

CTXT RULE:

If context_variable = VALUE1 ˄

If context_variable2 = VALUE3

Context Variable Range of Values

context_variable1 VALUE1, VALUE2

Context model

context_variable2 VALUE3

Parameters:
- the context condition to be inserted

Fig. 8. CP6 (DELETE Context Condition OF a Configuration Alternative)

Pattern CP6: DELETE Context Condition OF a Configuration Alternative

Description: In a configurable process model, a context condition of a
configuration alternative is deleted

Example: VIP passengers do not have to pay a fee for luggage overweight so
far. However, the airline decides that from now on all passengers must pay such
fee.

Problem: A context condition is no longer needed for selecting a configuration
alternative in a configurable region and thus shall be deleted.

Implementation in C-EPC: CP6 is not applicable since context information is
captured separately in the questionnaire model, which is not considered in this
work.

Implementation in Provop: CP6 is realized by deleting a context rule. If the

context rule includes context variables (or values) not used by any other context

rule, the context model must be updated accordingly, i.e., context variables (or

values) are deleted.

CTXT RULE:

If context_variable = VALUE1 ˄

If context_variable2 = VALUE3

Context Variable Range of Values

context_variable1 VALUE1, VALUE2

Context model

context_variable2 VALUE3

Parameters:
- the context condition to be deleted

Fig. 9. CP7 (MODIFY Context Condition OF a Configuration Alternative)

Pattern CP7: MODIFY Context Condition OF a Configuration Alternative

Description: In a configurable process model, a context condition is modified.

Example: The payment of an extra fee is required when luggage weight
exceeds over 20kg. Due to new business goals, this is changed and the extra

fee is only required when the luggage weights more than 15kg.
Problem: A context condition is no longer adequate and shall be modified in
the configurable process model.

Implementation in C-EPC: CP7 is not applicable since context information is
captured separately in the questionnaire model, which is not considered in this
work.

Implementation in Provop: CP7 is realized by modifying a context rule either
inserting or deleting its context variables, or modifying their values. If new
context variables (or values) are inserted, the context model should be updated
accordingly. On the contrary, if deleted context variables (or values) are not
used in other context rules, they are deleted from the context model.

CTXT RULE:

If context_variable = VALUE1 ˄

If context_variable2 = VALUE3

context_variable3 VALUE4

Range of Values

context_variable1 VALUE1, VALUE2

Context model

context_variable2 VALUE3

Context Variable

context_variable3 = VALUE4

Parameters:
- the context condition to be modified

Fig. 10. CP8 (INSERT Configuration Constraint BETWEEN Configuration

Alternatives)

5 We only consider configuration constraints between change options since configuration
constraints between change operations are implicitly specified by their definition

Pattern CP8: INSERT Configuration Constraint BETWEEN Configuration
Alternatives

Description: In a configurable process model, a constraint regarding the use of
configuration alternatives from one or more configurable regions shall be
added.

Example: When unaccompanied minors are travelling, extra staff is required to
accompany them to the boarding gate, i.e., an inclusion constraint exists.

Problem: The use of configuration alternatives needs to be constrained in a
configurable process model and thus a configuration constraint shall be added.

Implementation in C-EPC: CP8 is realized by inserting a configuration
requirement, which is then linked to the configurable nodes that delimit the
configurable region to which the respective configuration alternatives to be
related belong.

Configuration

requirement 1

A D
C

B

F

E
A D

C

B E

F

Configuration

requirement 1

Implementation in Provop: CP8 is realized by adding a constraint regarding

the use of change options in the option constraint model 5.

Opt. 1 Opt. 2requires

Option constraint model
requires

B

Y

A C

Z

O
p

t.
 1

Y ZINSERT
X

CTXT RULE:

If context_variable = VALUE

O
p

t.
 2

INSERT

CTXT RULE:

If context_variable2 = VALUE2

Y Z
G

Parameters:
- the configuration region to which the alternatives whose use shall be

constrained belong
- the configuration constraint to be inserted

Fig. 11. CP9 (DELETE Configuration Constraint BETWEEN Configuration

Alternatives)

6 We only consider configuration constraints between change options since configuration
constraints between change operations are implicitly specified by their definition

 Pattern CP9: DELETE Configuration Constraint BETWEEN Configuration
Alternatives

Description: In a configurable process model, a constraint between two or
more configuration alternatives from one or more configurable regions shall be
deleted.

Example: When unaccompanied minors are travelling, extra staff is required to
accompany them to the boarding gate (i.e., inclusion constraint). Due to
emerging legal regulations, from now on their relatives shall accompany them,
i.e., the inclusion constraint is no longer needed.

Problem: A constraint between two or more configuration alternatives is no
longer needed and thus it shall be deleted.

Implementation in C-EPC: CP9 is realized by deleting a configuration
requirement, which is linked to the configurable nodes that delimit the
configurable region to which the respective configuration alternatives belong.

Configuration

requirement 1

A D
C

B

F

E

A D
C

B

F

E

Implementation in Provop: CP9 is realized by deleting a constraint between

two change options in the option constraint model 6.

Change option 1 Change option 2requires

Option constraint model

Parameters:
- the configuration constraint to be deleted

6. Discussion

Even though—as shown by the systematic literature review—existing proposals
use different terminology and realize the constructs in different ways, they
essentially support the same variability-specific language constructs. Similar to
adaptation patterns, we expect that the change patterns have the potential to
speed up the creation as well as modification of configurable process models. In
addition, like adaptation patterns, the change patterns for process families may
therefore serve as benchmark for evaluating change support in existing languages
and tools dealing with process families as well as for facilitating their systematic
comparison by providing a frame of reference. To substantiate these claims, we
plan to conduct empirical studies testing the impact of the proposed patterns on
both the creation and evolution of configurable process models. Moreover, in a
similar vein than adaptation patterns, the proposed change patterns may serve as
a reference for realizing changes in different stages of the process family life
cycle, e.g., modeling, maintenance, and evolution.

As with every research, our work is subject to limitations. A first one concerns the
completeness of the proposed patterns. We tried to accommodate this by
grounding patterns on a SLR covering 25 different proposals for process families
and by using variability-specific language requirements commonly occurring as
basis for our patterns. As a consequence, we are confident that the proposed
pattern set is complete in the sense that it allows modeling and modifying process
families. However, we cannot state with certainty that the identified patterns set is
sufficiently large to address all potential use cases regarding the modeling and
change of process families in the most efficient way. For this, empirical studies on
the practical use of the patterns are needed. Closely related to this are
considerations regarding the language-independent nature of the proposed
patterns. Using commonly occurring variability-specific constructs as a basis, we
can ensure that the proposed patterns are expressive enough to model and
modify process families. To ensure that the patterns are also specific enough to
cover the particularities of the different proposals, we applied them to two
commonly used and entirely different proposals for process families. To
strengthen the validation of the patterns, they will be applied to other proposals in
future work. Moreover, the focus of the proposed patterns is currently on
variability-specific constructs regarding the control flow perspective. Variability
regarding additional perspectives like data or resources has not been considered
so far.

The proposed patterns have been described in an informal way. To obtain
unambiguous pattern descriptions and ground pattern implementation as well as
pattern-based analysis on a sound basis, a formal semantics is needed. This
formalization should be independent from any process meta model and thus allow
implementing the patterns in a variety of process support tools.

7. Conclusions and Outlook

We proposed nine patterns for dealing with changes in process families.
We complement existing work on patterns for creating and modifying BP models
by introducing a set of generic and language-independent patterns that cover the
specific needs of process families. The patterns are based on variability-specific
language constructs. To demonstrate that they still cover the essence of existing
proposals managing BP variability, we applied them to two representative
proposals. Used in combination with adaptation patterns, change patterns for
process families allow modeling and evolving process families at an abstract level.
In future work, we will develop a prototype based on which we will conduct
experiments to measure the efforts of handling variability in process families. We
will study the impact of patterns on modeling process families as well as on
changing either at design or run-time.

References

1. van der Aalst, W.M.P., ter Hofstede, A., Barros, B.: Workflow Patterns.
Distributed and Parallel Databases 14(1), 5–51 (2003).
2. Aiello, M., Bulanov, P., Groefsema, H.: Requirements and Tools for Variability
Management. In Porc. IEEE 34th Annual Computer Software and Applications
Conference Workshops, 245-250 (2010).
3. Aghakasiri, Z., Mirian-Hosseinabadi, S.H.: Workflow change patterns:
Opportunities for extension and reuse. In Proc. SERA’09, 265-275 (2009).
4. Ayora, C., Torres, V., Reichert, M., Weber, B., Pelechano, V.: Towards run-time
flexibility for process families: open issues and research challenges. In Proc. BPM
Workshops, 477–488 (2012).
5. Dadam, P., Reichert, M.: The ADEPT project: a decade of research and
development for robust and flexible process support. Com Sci - R&D 23, 81–97
(2009).
6. Dijkman, R., La Rosa, M., Reijers H.A: Managing large collections of business
process models - Current techniques and challenges, Comp in Ind 63(2), 91–97
(2012).
7. Döhring, M., Zimmermann, B., Karg, L.: Flexible workflows at design- and
runtime using BPMN2 adaptation patterns. In Proc. BIS’11, 25–36 (2011).
8. Gottschalk, F.: Configurable process models. Ph.D. thesis, Eindhoven
University of Technology, The Netherlands (2009).
9. Grambow, G., Oberhauser, R., Reichert, M.: Contextual injection of quality
measures into software engineering processes. Intl J Adv in Software 4, 76-99
(2011).
10. Gschwind, T., Koehler, J., Wong, J.: Applying patterns during business
process modeling. In: Proc BPM’08, 4–19 (2008).

11. Günther, C.W., Rinderle, S., Reichert, M., van der Aalst, W.M.P.: Change
mining in adaptive process management systems. In Proc. CoopIS’06, 309–326
(2006).
12. Hallerbach, A., Bauer, T., Reichert, M.: Context-based configuration of
process variants. In Proc. TCoB’08, 31–40 (2008).
13. Hallerbach, A., Bauer, T., Reichert, M.: Capturing variability in business
process models: the Provop approach. J of Software Maintenance 22(6–7), 519–
546 (2010).
14. Kitchenham, B., Charters, S.: Guidelines for performing Systematic
Literature Reviews in Software Engineering, Technical Report EBSE/EPIC–2007–
01 (2007).
15. Kulkarni, V, Barat, S., Roychoudhury, S.: Towards business application
product lines. In Proc. MoDELS’12, 285–301 (2012).
16. Küster, J., Gerth, C., F¨orster, A., Engels, G.: Detecting and resolving
process model differences in the absence of a change log. In Proc. BPM’08, 244–
260 (2008).
17. Küster, J., Gerth, C., Engels, G.: Dynamic computation of change operations
in version management of business process models. In: ECMFA’10, 201-216
(2010).
18. Lanz, A., Weber, B., Reichert, M.: Time patterns for process-aware
information systems. Requirements Engineering, 1–29 (2012).
19. La Rosa, M., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M.:
Questionnaire-based variability modeling for system configuration. Software
and System Modeling 8(2), 251–274 (2009).
20. Lerner, B.S., Christov, S., Osterweil, L.J., Bendraou, R., Kannengiesser, U.,
Wise, A.: Exception Handling Patterns for Process Modeling. IEEE Transactions
on Software Engineering 36(2), 162-183 (2010).
21. Li, C., Reichert, M., Wombacher, A.: Mining business process variants:
Challenges, scenarios, algorithms. Data Knowledge & Engineering 70(5), 409–
434 (2011).
22. Marrella, A., Mecella, M., Russo, A.: Featuring automatic adaptivity through
workflow enactment and planning. In Proc. CollaborateCom’11, 372-381 (2011).
23. Müller, D., Herbst, J., Hammori, M., Reichert, M.: IT support for release
management processes in the automotive industry. In Proc. BPM’06, 368–377
(2006).
24. Reichert, M., Weber, B.: Enabling flexibility in process-aware information
systems: challenges, methods, technologies. Springer (2012).
25. Reinhartz-Berger, I., Soffer, P., Sturm, A.: Organizational reference models:
supporting an adequate design of local business processes. IBPIM 4(2), 134–149
(2009).
26. Rosemann, M., van der Aalst, W.M.P.: A configurable reference modeling
language. Information Systems 32(1), 1–23 (2007).
27. Russell, N., ter Hofstede, A., Edmond, D., van der Aalst, W.: Workflow data
patterns. Technical Report FIT-TR-2004-01, Queensland Univ. of Techn. (2004).

28. Russell, N., ter Hofstede, A., Edmond, D., van der Aalst, W.: Workflow
resource patterns. Technical Report WP 127, Eindhoven Univ. of Technology
(2004).
29. Russell, N., van der Aalst, W.M.P., Hofstede, A.: Workflow Exception Patterns.
Advanced Information Systems Engineering 4001, 288-302 (2006).
30. Smirnov, S., Weidlich, M., Mendling, J., Weske, M.: Object-sensitive action
patterns in process model repositories. In: Proc. BPM10 Workshops, 251-263
(2010).
31. Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change
support features - Enhancing flexibility in process-aware information systems.
Data Knowledge & Engineering 66, 438-466 (2008).
32. Weber, B. Sadiq, S. Reichert, M. Beyond rigidity - dynamic process lifecycle
support. Computer Science 23, 47–65 (2009).
33. Weber, B., Reichert, M., Reijers, H.A., Mendling, J.: Refactoring large process
model repositories. Computers in Industry 62(5), 467–486 (2011).

